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Abstract
Casuarina equisetifolia is commonly planted and used in the construction of coastal shelter-

belt protection in Hainan Island. Thus, it is critical to accurately estimate the tree biomass of

Casuarina equisetifolia L. for forest managers to evaluate the biomass stock in Hainan. The

data for this work consisted of 72 trees, which were divided into three age groups: young for-

est, middle-aged forest, and mature forest. The proportion of biomass from the trunk signifi-

cantly increased with age (P<0.05). However, the biomass of the branch and leaf

decreased, and the biomass of the root did not change. To test whether the crown radius

(CR) can improve biomass estimates of C. equisetifolia, we introduced CR into the biomass

models. Here, six models were used to estimate the biomass of each component, including

the trunk, the branch, the leaf, and the root. In each group, we selected one model among

these six models for each component. The results showed that including the CR greatly

improved the model performance and reduced the error, especially for the young and

mature forests. In addition, to ensure biomass additivity, the selected equation for each

component was fitted as a system of equations using seemingly unrelated regression

(SUR). The SURmethod not only gave efficient and accurate estimates but also achieved

the logical additivity. The results in this study provide a robust estimation of tree biomass

components and total biomass over three groups of C. equisetifolia.

Introduction
Biomass is the biological material, whereas the forest biomass, especially for tree biomass,
includes all existing plant mass in the forest or arboreal fraction, including trunks, branches,
leaves, and roots [1]. Due to its important carbon pool in forest ecosystems [2] and the costly
and time-consuming process of collecting tree biomass in the forest, the accurate prediction
of forest biomass stocks is in great need for scientists, policymakers and forest managers try-
ing to address an increasing array of demands in forests. A number of approaches for tree
biomass prediction have been reported and can be divided into three categories: (1) the direct
prediction of tree biomass from the measurement of variables using allometry equations [3–
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6]; (2) the prediction of biomass components from biomass-volume models [7, 8]; and (3)
the direct prediction of tree biomass from the biomass conversion and expansion factors
(BCEF) [9–11], the biomass expansion factor (BEF) [12, 13], the root: shoot ratio [14], the
wood density [15], and so on.

The direct prediction of biomass is probably the most accurate and involves felling and
weighting different sizes, ages and species, calculating the biomass of tree components, and
constructing the relationships between these components to tree measurement variables,
namely the diameter at breast height and the total height. With the available data, a modeling
study can be carried out to determine the best equation for estimating the biomass components
and the total tree biomass of a given area. In most cases, modeling of biomass components and
the total tree biomass are performed independently. Using these equations, the sum of the bio-
mass components generates inconsistent results from those obtained using the total tree bio-
mass model [1, 4], implying that the models for biomass components and the total tree
biomass should be estimated together. Simultaneous estimation considering the additivity
principle [16] should be used to solve the inconsistency in these estimates. Because cross-equa-
tion correlations existed among error components of the above models, a method suggested by
Borders [17] was used to simultaneously estimate the parameters of the regression system.
Zhang et al. [18] used this method to estimate the system equations of forest growth. This tech-
nique provides a statistically correlated system of equations with restrictions to parameters and
ensures additivity.

Casuarina equisetifolia, an environmentally and economically important tree species of the
Casuarinaceae family [19], was successfully introduced to the tropical and sub-tropical zones
of China in 1897 [20–22]. C. equisetifolia has special canopy characters, such as whorls of tiny
scales, fine cladodes and a tower-shaped morphological structure. These phenotypic character-
istics increase wind resistance and allow for better growth in hostile coastal environments [23].
In the green shelterbelts in southern China, C. equisetifolia is one of the key species for coastal
protection against typhoons and tsunamis, as well as for wood and fuel wood production. C.
equisetifolia was introduced to Hainan Island, China, in the 1950s and immediately became the
dominant species due to its pioneer characteristics, including fast growth, adaptability to
degraded sites for soil improvement, and ability to resist wind [23]. Under global climate
change and multifunctional forest management, it is critical to accurately estimate the tree bio-
mass of C. equisetifolia for forest managers and policymakers evaluating the carbon stock in
Hainan Island. Wu et al. [24] established root biomass equations of C. equisetifolia clones in
northeastern Hainan Island. Yang et al. [20] developed tree biomass models of C. equisetifolia
in Hainan. However, the biomass models were not developed by age groups. There were signif-
icant differences in the biomass concentrations among the different parts of the tree at different
age groups [25, 26]. In addition, the biomass models that were developed by Yang et al. [27]
did not account for the variable crown radius (CR). The tree CR is considered an indirect mea-
sure of the photosynthetic capacity of trees [28]. Goodman et al. [29] found that the measure-
ment of CR was critical to improving the estimation of tree biomass.

The objective of this study was (1) to develop a tree component biomass model and a total
biomass model of C. equisetifolia by age groups in the tropical forest of Hainan Island; (2) to
test the importance and influence of CR on the estimation of biomass components; and (3) to
ensure the additivity of tree biomass components.

Study Sites
This study was conducted in the northeast coastal zone of Hainan Island (E: 110°360-111°010,
N: 19°400-20°060), adjacent to the South China Sea in the monsoon tropics of south China. The
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elevation ranges from 5 m to 70 m above sea level, and the highest elevation is 70 m. The tropi-
cal marine climate ensures an annual rainfall of 1721.6 mm. The mean annual air temperature
varies between 23.4°C and 24.4°C, and the minimum and maximum temperatures are 17°C
and 36°C, respectively. The soil structure was loose, with good permeability but low water-
retention properties. Most of the tree species in the study sites are C. equisetifolia, Pinus elliottii,
Acacia mangium, Acacia auriculiformis, Acacia crassicarpa, Pinus caribaea, and Calophyllum
inophyllum. Among these tree species, C. equisetifolia is the dominant tree species, accounting
for 79% of these species.

Methods

Data collection
The data used in this study were from a systematic sampling of permanent, square-shaped
plots (0.067 ha) across northeast Hainan Island that were aggregated over a 4×3 km grid. A
total of 72 C. equisetifolia trees were randomly collected from these plots and divided into three
groups [22]: young (age�5yrs), middle-aged (6<age�15yrs) and mature (15yrs<age). The
plantations were authorized by the Forestry Research Institute of Hainan Province. The field
studies did not involve endangered or protected species.

The tree biomass was measured using the destructive method. The crown width was mea-
sured in two directions at 90° angles from each other and averaged before the tree was felled.
After the tree was felled, the diameter at breast height (D) and the total tree height (H) were
measured in the field. The fresh biomass was obtained by weighing the four components of
each tree separately: the trunk, the branch, the leaf, and the root. The trunk was cut into 3 seg-
ments and weighed separately, considering the different moisture contents in the whole trunk,
and three subsamples (approximately 500 g each) of each segment were selected and weighed
in the field. In addition, three subsamples of the branches and leaves (approximately 500 g
each) were selected and weighed in the field and transported back to the laboratory for drying.
In terms of roots, the root system is often partially removed from the soil [30,31]. However,
the disadvantage of sampling procedure is that the observed root biomass is less accurately
determined compared to excavating in full [32]. Here, the whole roots of all of the sample
trees were excavated. A trench was dug to the extent of the crown coverage, and the depth of
excavation depended on the depth of the taproot. The fresh weights of the stump, the coarse
roots (more than 10 mm), and the small roots (2–10 mm, not including fine roots less than 2
mm) were measured. In addition, subsamples were selected and weighed in the field and
transported to the laboratory.

After being transported to the laboratory, the subsamples were oven-dried at 85°C until a
constant weight was obtained. Dry weights were computed for all tree components using the
ratio of dry weight to fresh weight from subsamples from each component and multiplied by
their known fresh weights. The total tree biomass was generated by summing the biomass of
each component. The statistics of the tree variables and the biomass of each component at dif-
ferent age groups are listed in Table 1.

Tree biomass model
In this study, the direct prediction of the tree biomass from measurement variables was used to
estimate the tree biomass of C. equisetifolia in the tropical forest of Hainan Island. The stan-
dard tree biomass equation predicts tree biomass as a power function of the diameter at breast
height [33]. However, in some cases, other variables, such as the total tree height and the crown
radius, are also important predictors [34–36]. These equations have biologically meaningful
coefficients related to the theory of “allometric” scaling relationships [37]. Niklas [38]
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demonstrated that the allometric relationships changed, even within the lifetime of individuals
of a single species. Here, we used the following six equations to estimate the tree component
biomass according to three age groups, including young, middle-aged, and mature forests.

W ¼ aDb ð1Þ

W ¼ aDbHc ð2Þ

W ¼ aDbCRc ð3Þ

W ¼ aðD2HÞb ð4Þ

W ¼ aðD2HÞbCRc ð5Þ

W ¼ aDbHcCRd ð6Þ

whereW is tree biomass in kg, and α, b, c, and d are the parameters to be estimated. Overman
et al. [39] reported that it is convenient to use logarithms for the fitting model and for dealing
with heteroscedasticity. Therefore, Eqs (1) to (6) can be linearized using logarithms in the fol-
lowing equations, respectively:

lnðWÞ ¼ aþ blnðDÞ ð7Þ

lnðWÞ ¼ aþ blnðDÞ þ clnðHÞ ð8Þ

lnðWÞ ¼ aþ blnðDÞ þ clnðCRÞ ð9Þ

lnðWÞ ¼ aþ blnðD2HÞ ð10Þ

Table 1. Tree variables and biomass of each component ofC. equisetifolia in different age groups.

Age group D/cm H/m CR/m WT/kg WB/kg WL/kg WR/kg

Young(n = 18) Mean 6.317 9.183 3.332 12.388 2.593 2.958 5.008

SD. 2.759 3.359 0.840 14.861 2.111 2.773 5.669

Max. 13.1 15.4 5.725 58.959 8.163 12.07 20.751

Min. 2.5 4.1 1.95 0.664 0.326 0.627 0.515

Middle(n = 19) Mean 12.747 14.016 3.834 52.450 10.534 7.315 19.885

SD. 2.132 2.869 0.644 23.788 6.853 3.308 9.832

Max. 16.8 19.5 5.05 103.707 34.249 15.258 40.798

Min. 9.3 8 2.85 18.243 3.871 2.569 7.343

Mature (n = 35) Mean 23.12 17.589 6.166 237.858 37.271 26.427 88.173

SD. 5.092 2.207 1.876 111.181 32.687 31.652 61.748

Max. 36.3 22.7 10.55 537.391 155.955 153.917 291.325

Min. 15.6 14.1 3.4 91.731 11.208 7.618 29.106

Note: D is the diameter at breast height; H is the total tree height; CR is the crown radius; Wt is the biomass of the trunk; WB is the biomass of the branch;

WL is the biomass of the leaf; WR is the biomass of the root; SD is the standard deviation.

doi:10.1371/journal.pone.0151858.t001
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lnðWÞ ¼ aþ blnðD2HÞ þ clnðCRÞ ð11Þ

lnðWÞ ¼ aþ blnðDÞ þ clnðHÞ þ dlnðCRÞ ð12Þ
where a = ln(α). The log-transformation of the data leads to a biased biomass estimation [40,
41], and uncorrected biomass estimates are theoretically expected to generate a systematic
underestimation. The bias is not an arithmetic constant value but rather a constant proportion
of the estimation [42]. Baskerville [43] recognized this detail and gave a multiplicative correc-
tion factor for this bias:

CF ¼ expðs
2

2
Þ ð13Þ

where s2 ¼
X

ðlnW � lnŴÞ2=ðn� 2Þ is the mean square error from the logarithmic regres-

sion, and n is the sample size. Therefore, the estimated tree biomass (Ŵ ) could be calculated
from Eq (14):

Ŵ ¼ expðlnW
^

ÞCF ð14Þ

Model selection
The coefficient of determination (R2) is the most widely used criterion in biomass model lit-
erature. However, in many situations, it has been used uncritically. The R2 is deceptive
because it increases with the addition of polynomial terms and with the inclusion of new pre-
dictors [44, 45]. Therefore, R2 can sometimes be a poor estimator of model performance. The
mean absolute prediction error (MAPE) [33, 46, 47] was used as the primary metric to evalu-
ate and compare the performance of models, whose statistical properties are well known and
commonly used in forecasting and model comparison in ecology and environment assess-
ment.

R2 ¼ 1� SðWi � Ŵ iÞ2=SðWi � �WÞ2 ð15Þ

MAPE ¼ 1

n

Xn

i¼1

jWi � Ŵ ij
Wi

ð16Þ

whereWi = observed biomass value tree i, and Ŵ i and �W = the estimated value and the aver-
age, respectively, ofWi.

In this study, we first used the above Eqs (7–12) and Eq (14) to estimate the biomass of tree
components, including the trunk, the branch, the leaf and the root, by age groups. Then, we
selected the best equation according to the evaluation statistics (R2 and MAPE) and the signifi-
cance of the estimated parameters. Finally, the best equation for each component was fitted as
a system of equations ensuringWTotal =WT +WB +WL +WR using a seemingly unrelated
regression (SUR) [48]:

lnðWTÞ ¼ f ðD;H;CRÞ
lnðWBÞ ¼ f ðD;H;CRÞ
lnðWLÞ ¼ f ðD;H;CRÞ
lnðWRÞ ¼ f ðD;H;CRÞ
WTotal ¼ expðlnWTÞCFT þ expðlnWBÞCFB þ expðlnWLÞCFL þ expðlnWRÞCFRÞ

8>>>>>>><
>>>>>>>:

ð17Þ
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where CFT, CFB, CFL, CFR are the correction factors for trunk biomass, branch biomass, leaf bio-
mass, and root biomass by age groups, respectively. The fitting procedure involved the use of
option SUR of the procedure MODEL in SAS. The normality of the residual for total biomass pre-

diction (ŴTotal) was tested using the normal Q-Q plot and the Shapiro-Wilk test of normality.

Results

Biomass allocation
The tree biomass of C. equisetifolia over the three age groups was highest in the trunk, followed
by (in decreasing order) the root, the branch, and the leaf. The proportion of the biomass from
trunk increased with forest age, while that in the branch and the leaf declined, especially for the
leaf, which significantly declined from the young forest to the middle-aged forest (ANOVA
analysis, F = 30.457, P<0.001). In addition, the proportion of biomass of C. equisetifolia that
from the root was independent of tree age (ANOVA analysis, F = 0.276, P = 0.76). Of the total
biomass, the trunk accounted for 47.6% to 62.9% from the young forest to the mature forest,
respectively, the branch for 14.9% to 9.2%, the leaf for 16.4% to 6.2%, and the root for 21.1% to
21.7% (S1 Table, Fig 1).

Each component biomass model selection by age groups
We developed the tree component biomass models for young, middle-aged and mature forests
using Eqs (7–12), and the correction factor was applied to back-transformed predictions (Eq
14). The R2 and the MAPE were calculated based on the back-transformed predictions.

Fig 1. Proportion of the tree biomass from the trunk, the branch, the leaf, and the root in young, middle-aged, andmature forests.

doi:10.1371/journal.pone.0151858.g001
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In the young forest, both Eqs 8 and 10 performed the best in estimating the trunk biomass
compared to other models in terms of the MAPE, the R2, and the parameter significance. Both
of these equations explained 99.4% of the variance in the trunk biomass, and the MAPE was
0.071 (Table 2). Here we used the Eq 8 to model the trunk biomass. The best model for estimat-
ing the branch biomass was Eq 9 compared to other models in terms of the MAPE and parame-
ter significance. The second performance model Eq 11 resulted in a 1.26% increase in the
MAPE over the best model (Eq 9). The best model introducing the variable CR explained
85.3% of the variance in the branch biomass. Although the MAPE in Eq 12 was equal to Eq 9,
the two-parameter estimates of this model were not significant at a level of 0.05. In terms of the
MAPE and the parameter estimate significance, the best model for estimating the leaf biomass
was Eq 9, in which the MAPE was 0.341, lower than that of the other models. For the root

Table 2. Parameter estimates andmodel evaluation statistics of each biomassmodel for the young forest.

Component model a B c d R2 MAPE

Eq (7)

Trunk -2.785* 2.678* - - 0.994 0.110

Branch -1.776* 1.407* - - 0.820 0.391

Leaf -1.702* 1.422* - - 0.795 0.379

Root -2.841* 2.259* - - 0.876 0.175

Eq (8)

Trunk -3.413* 1.884* 0.941* - 0.994 0.071

Branch -1.322* 1.980* -0.680 - 0.843 0.372

Leaf -1.272* 1.965* -0.644 - 0.829 0.367

Root -3.110* 1.919* 0.403 - 0.878 0.168

Eq (9)

Trunk -2.637* 2.757* -0.244 - 0.991 0.103

Branch -2.466* 1.041* 1.134* - 0.853 0.315

Leaf -2.208* 1.154* 0.831* - 0.746 0.341

Root -3.094* 2.125* 0.416* - 0.933 0.159

Eq (10)

Trunk -3.414* 0.942* - - 0.994 0.071

Branch -2.022* 0.480* - - 0.773 0.436

Leaf -1.954 0.485* - - 0.742 0.409

Root -3.343* 0.789* - - 0.874 0.163

Eq (11)

Trunk -3.414* 0.942* 0.001 - 0.994 0.071

Branch -2.743* 0.349* 1.245* - 0.826 0.319

Leaf -2.510* 0.384* 0.960* - 0.703 0.348

Root -3.693* 0.726* 0.604* - 0.952 0.134

Eq (12)

Trunk -3.415* 1.883* 0.942* 0.001 0.994 0.071

Branch -2.388* 1.128 -0.094 1.109* 0.858 0.315

Leaf -2.011* 1.375* -0.239 0.769 0.764 0.348

Root -3.689* 1.456* 0.721* 0.603* 0.950 0.135

Note: Values in bold denote the best statistic among six biomass models for each component.

* means significant at 0.05 level.

doi:10.1371/journal.pone.0151858.t002

Biomass Allocation and Its Model Additivity of Casuarina equisetifolia in Tropical Forest of Hainan

PLOS ONE | DOI:10.1371/journal.pone.0151858 March 22, 2016 7 / 20



biomass model, Eq 11 with the variables D2H and CR was the best model, as the MAPE was the
lowest, and the R2 was the highest. In addition, the three parameters of this model were all sig-
nificant at a level of 0.05.

In the middle-aged forest, Eq 8 explained 92.4% of the variance in the trunk biomass
(Table 3). In addition, the MAPE was lowest, 55.2% lower than that of the equation with only
D (Eq 7), indicating that the total tree height greatly improved the trunk biomass model. For
the branch biomass model, although the MAPE from Eq 12 was the lowest, the parameters of
H and CR were not significant at a level of 0.05. Eq 7 was the best for estimating the branch bio-
mass and the leaf biomass. In terms of the root biomass, both the MAPE and the R2 showed
that Eq 10 was the best model.

Table 3. Parameter estimates andmodel evaluation statistics of each biomassmodel for the middle-aged forest.

Component model a b c d R2 MAPE

Eq (7)

Trunk -2.108* 2.354* - - 0.776 0.203

Branch -4.222* 2.538* - - 0.529 0.268

Leaf -3.164* 1.996* - - 0.587 0.288

Root -3.018* 2.326* - - 0.627 0.277

Eq (8)

Trunk -2.901* 1.103* 1.513* - 0.924 0.091

Branch -3.977* 2.925* -0.467 - 0.537 0.266

Leaf -2.8199 2.541* -0.660 - 0.580 0.284

Root -3.337* 1.822* 0.609 - 0.696 0.264

Eq (9)

Trunk -2.637* 2.104* 0.872* - 0.793 0.198

Branch -4.185* 2.556* -0.061 - 0.532 0.269

Leaf -3.139* 2.008* -0.042 - 0.583 0.289

Root -3.308* 2.189* 0.479 - 0.642 0.258

Eq (10)

Trunk -3.157* 0.912* - - 0.923 0.114

Branch -3.463* 0.738* - - 0.413 0.311

Leaf -2.305* 0.546* - - 0.438 0.346

Root -3.257* 0.798* - - 0.706 0.252

Eq (11)

Trunk -3.217* 0.869* 0.294 - 0.908 0.124

Branch -3.382* 0.797* -0.404 - 0.435 0.316

Leaf -2.254* 0.583* -0.251 - 0.429 0.347

Root -3.263* 1.793* 0.032 - 0.706 0.265

Eq (12)

Trunk -2.888* 1.098* 1.532* -0.038 0.924 0.091

Branch -4.083* 2.961* -0.618 -0.306 0.524 0.264

Leaf -2.991* 2.601* -0.902 0.495 0.597 0.275

Root -3.395* 1.842* 0.528 0.165 0.696 0.260

Note: Values in bold denote the best statistic among six biomass models for each component.

* means significant at 0.05 level.

doi:10.1371/journal.pone.0151858.t003
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In mature forests, Eq 7 with only D was best in terms of having the lowest MAPE and the
second highest R2 (Table 4). Although the MAPE values from Eqs 7 and 8 were equal, the effect
ofH on the trunk biomass was not significant for this dataset (P>0.05). The best equation for
estimating the branch biomass was Eq 10 compared to other models in terms of the MAPE and
the R2. Eq 9 with variables D and CR had the lowest MAPE compared to the other models in
estimating the biomass of the leaf and the root. In terms of leaf biomass, adding CR greatly
improved estimates, increasing the R2 and reducing the MAPE compared to the equivalent
equation without CR (Eq 7).

Table 4. Parameter estimates andmodel evaluation statistics of each biomassmodel for the mature forest.

Component model a b c d R2 MAPE

Eq (7)

Trunk -0.963* 2.032* - - 0.936 0.105

Branch -3.945* 2.349* - - 0.681 0.394

Leaf -4.108* 2.270* - - 0.488 0.399

Root -3.566* 2.525* - - 0.909 0.132

Eq (8)

Trunk -0.890* 2.050* -0.044 - 0.936 0.105

Branch -4.297* 2.262* 0.218 - 0.689 0.394

Leaf -4.652* 2.136* 0.337 - 0.491 0.398

Root -3.379* 2.571* -0.116 - 0.910 0.132

Eq (9)

Trunk -0.890* 1.985* 0.042 - 0.937 0.106

Branch -4.159* 2.488* -0.124 - 0.681 0.396

Leaf -3.187* 1.672* 0.532* - 0.503 0.380

Root -3.170* 2.268* 0.228* - 0.921 0.126

Eq (10)

Trunk -2.081* 0.819* - - 0.909 0.116

Branch -5.313* 0.956* - - 0.692 0.384

Leaf -5.466* 0.927* - - 0.483 0.406

Root -4.938* 1.016* - - 0.868 0.154

Eq (11)

Trunk -1.804* 0.767* 0.116 - 0.914 0.116

Branch -5.467* 0.985* -0.064 - 0.691 0.385

Leaf -4.129* 0.671* 0.559* - 0.502 0.385

Root -4.165* 0.868* 0.323* - 0.893 0.153

Eq (12)

Trunk -0.806* 2.004* -0.050 0.043 0.936 0.106

Branch -4.551* 2.403* 0.235 -0.131 0.689 0.395

Leaf -3.641 1.573* 0.271 0.523* 0.506 0.380

Root -2.928* 2.320* -0.145 0.233* 0.922 0.126

Note: Values in bold denote the best statistic among six biomass models for each component.

* means significant at 0.05 level.

doi:10.1371/journal.pone.0151858.t004
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Biomass predictions using SURmethod by age groups
Based on the best model for each component analyzed above, we used SUR method to estimate
a system of equations (Eq (15)) to ensure the additivity of the total tree biomass, including the
trunk biomass, the branch biomass, the leaf biomass, and the root biomass.

In the young forest, the trunk biomass predictions were close to the observed biomass, as
well as the branch biomass, leaf biomass and root biomass (Fig 2). In terms of the total bio-
mass predictions, the predictions were highly correlated with the observed values (Fig 3),
and the residual was normal (Fig 4, Shapiro-Wilk test, P = 0.891>0.05). In the middle-aged
forest, the fit accuracy of the trunk biomass was very high (Fig 5). However, the branch bio-
mass, leaf biomass and root biomass prediction performed worse than the trunk biomass
(Fig 5). In addition, the total biomass predictions were very close to observed values (Fig 3),
and the residual for total biomass predictions was also normal (Fig 6, Shapiro-Wilk test,
P = 0.274>0.05). The SUR method also showed good performance on predicting the trunk

Fig 2. The relationship between the predicted biomass and observed biomass for four components in young forest.

doi:10.1371/journal.pone.0151858.g002
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biomass, branch biomass, leaf biomass, root biomass in the mature forest (Fig 7), as well as
the total biomass which could be depicted by the relationship and residual plots (Shapiro-
Wilk test, P = 0.839>0.05, Figs 3 and 8). All the parameter estimates of the selected biomass
models by age groups using SUR method are displayed in Table 5.

Discussion
Variation in the tree biomass and its allocation to components was commonly found in com-
parisons among individuals, ages, stands, regions, and species [49–51]. In the study, the pro-
portion of trunk biomass to total tree biomass significantly increased at a level of 0.05 in the
young forest to the mature forest and represented the greatest portion of the total biomass,
which also could be found in other studies [52–53]. However, the proportion of branch bio-
mass and leaf biomass decreased from the young forest to the mature forest. The result is

Fig 3. The relationship between the predicted biomass and observed biomass for total biomass in young, middle-aged, andmature forests.

doi:10.1371/journal.pone.0151858.g003
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consistent with findings of Scots pine (Pinus sylvestris) [54] and loblolly pine (Pinus taeda)
[55]. The leaf biomass is a valuable component to quantify because it is highly correlated with
forest productivity in young forests, which typically peak as canopies close and then decreases
with stand age [56–57]. The relative amount of biomass from the leaf in this study significantly
decreased from the young forest to the middle-aged forest (Fig 1). The individual-tree root bio-
mass increases with tree age to maintain a balance between the above- and belowground com-
ponents [58–59]. Although the root biomass increased with tree age, the proportion of root
biomass to the total tree remained stable at the three stages, indicating that roots are a crucial
component when considering biomass partitioning for C. equisetifolia. Bijak et al. [60] reported
a decrease in the proportion of root biomass in relation to total biomass of the silver birch
(Betula pendula) with the increasing tree age, which was different in this study. C. equisetifolia
has a strong root system to be adaptable to degraded sites, which results in a high proportion of
biomass allocation at the whole stand development stages.

The main predictor of biomass, D, tends to work quite well for predicting tree biomass [61–
63], but it fails to provide accurate estimates of biomass component fractions [64]. Many stud-
ies have shown that improvements can be made by adding variables other then D to improve

Fig 4. Q-Q plot of the total biomass estimation for young forest.

doi:10.1371/journal.pone.0151858.g004
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tree biomass estimation. The most widely used variable is the total tree height because height-
diameter relationships vary across a range of ecological conditions [65–67]. Chave et al. [68]
found that the inclusion of height reduced the standard error of aboveground biomass esti-
mates from 19.2 to 12.5% in predicting the biomass of tropical forests. As noted above, more
than 50% of the aboveground biomass was from the trunk. In the trunk biomass models of this
study, the MAPE from equation with variable H was 35.45% and 55.17% lower than that of the
equation with only the variable D in the young and middle-aged forests, respectively. In the
leaf biomass equations, other variables, such as tree age, crown competition factors [69] that
are closely related to the leaf area, crown volume and canopy dynamics, are often not included
for individual trees. For realistic predictions of the leaf biomass, variables other than Hmust be
included [70–72]. The tree CR is a useful indicator of vigor and stand density [73–75]. Mea-
surements of crown dimensions have been recently emphasized as important to improving tree
biomass estimation, including measurements of the crown length, the crown width and the
diameter of the largest branch in a tree [29, 33]. Wang et al. [76] demonstrated that crown
width is an important determinant of leaf biomass for Korean pine (Pinus koraiensis). We also

Fig 5. The relationship between the predicted biomass and observed biomass for four components in middle-aged forest.

doi:10.1371/journal.pone.0151858.g005
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found that equations with the variable CR greatly improved root biomass estimates (Tables 2
and 4). However, some studies reported that root biomass equations were not improved by
including crown width [77–78]. In addition, tree age is the other factor. Disregarding tree age
may give biased biomass estimates [79]. In this study, we developed a biomass model for each
tree component by age group, which could be of benefit for forest managers when evaluating
biomass storage and carbon sequestration for C. equisetifolia in the tropical forest of Hainan
Island.

When we estimate biomass from tree components, it is desirable to have the property of
additivity in the biomass estimations of the components. The principle of additivity in which
the biomass estimations from component equations added to the total biomass has long been
recognized [16]. Parresol [48] found that a seemingly unrelated regression (SUR) method can
be applied when considering the contemporaneous correlations among different components
and biomass additivity, including the trunk, the branch, the leaf, and the root, from the same
tree. The SUR method led to efficient parameter estimates by considering inherent correlations
among biomass components. Russell [80] reported that the largest gain in using the SUR
method is that confidence and prediction intervals for biomass estimates are narrower than

Fig 6. Q-Q plot of total biomass estimation for middle-aged forest.

doi:10.1371/journal.pone.0151858.g006
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isolated estimates. In this study, based on the best individual regressions for each component
independently in young, middle-aged and mature forests, the systems of equations presented
herein will provide reasonable estimates for those who wish to estimate the biomass of C. equi-
setifolia trees in the tropical forest of Hainan Island (Figs 2–7).

Conclusion
The tree biomass of C. equisetifolia over the young, middle and mature three age groups in a
tropical forest of Hainan Island was highest in the trunk, followed by (in decreasing order) the
root, the branch, and the leaf. The biomass from the trunk increased with forest age, while that
in the branch and the leaf declined, especially for the leaf. In this study, 12 equations for bio-
mass components by three age groups were established and the best models for estimating tree
biomass components were selected according to the R2 and MAPE. Among these 12 equations,
only three equations with variable D were made, while the remaining equations introduced the
other variables, including H, D2H, and CR. An equation including the CR greatly improved the
model performance and reduced the error, especially for the young and mature forests. Also

Fig 7. The relationship between the predicted biomass and observed biomass for four components in mature forest.

doi:10.1371/journal.pone.0151858.g007
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Fig 8. Q-Q plot of the total biomass estimation for the mature forest.

doi:10.1371/journal.pone.0151858.g008

Table 5. Parameter estimates of the selected models for different components by age groups using SURmethod.

Component Age groups a b c

Young

Trunk -3.599 2.274 0.709

Branch -2.436 1.123 0.953

Leaf -2.158 1.211 0.640

Root -3.983 0.771 0.625

Middle

Trunk -2.822 1.218 1.375

Branch -6.197 3.358 -

Leaf -4.247 2.450 -

Root -2.620 0.712 -

Mature

Trunk -1.211 2.109 -

Branch -5.127 0.935 -

Leaf -2.704 1.827 -

Root -5.487 2.820 0.534

Note: In young forest, trunk: ln(W) = a + bln(D) + cln(H); branch and leaf: ln(W) = a + bln(D) + cln(CR); root: ln(W) = a + bln(D2H) + cln(CR). In middle-

aged forest, trunk: ln(W) = a + bln(D) + cln(H); branch and leaf: ln(W) = a + bln(D); root: ln(W) = a + bln(D2H). In mature forest, trunk and leaf: ln(W) = a +

bln(D); branch: ln(W) = a + bln(D2H); root: ln(W) = a + bln(D) + cln(CR).

doi:10.1371/journal.pone.0151858.t005
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taking into account the biomass additivity, our findings suggest that the seemingly unrelated
regression (SUR) not only gave efficient and accurate estimates but also achieved the logical
additivity of biomass for C. equisetifolia in a tropical forest of Hainan Island.
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